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Abstract- -- In this article wc examine a scheme that uscs two alternating Hufl-
man codes to encode a discrete independent. and identically distributed source with
a dominant. symbol, Onec Huflman code encodes tlie length of runs of the dominant
symbol, the other encodes the remaining symbols. Wc call this combined strategy
alternating runlength Huffman (A RH ) coding. This is a popular scheme, used for
example in the Efficient Pyramid Image Coder (EI'IC)subband coding algorithm.

Since the runlengths of the dominant, symbol arc gcometrically distributed, they
can be encoded using the Huflman codes identified by Golomb [1] and later genceralized
by Gallager and Van Voorhis [2]. This runlength encoding allows the most likely
symbol to be encoded using Icss than onc bit per sample, providing a simple method
of overcoming a drawback of prefix codes- that tlie redundancy approaches onc as
the largest symbol probability 7’ approaches one. For ARl coding, the redundancy
approachcs zero as 17 approaches one.

Comparing the average code rate of ARl with direct Huflman coding wc find that

1.1f P <1/3, ARH is less cfficient than Huflman coding.

2. If Y3 <P’ < 2/5 ARNislcss efficient. than Huffman coding, depending on the
source d istribution|.

3. 1f 2/5 < P’ < ().618, ARH and Huffman coding arc equally cflicient.
4. If 1'>0.618, ARH is more cfficient than Huflman coding,

We give examples of applying ARH coding to some spccific sources.

*I'he rescarch described in this abstract was cariied out a the Jet Propulsion Laboratory, Califor-
nia Institute of ‘Technology, under contract, with the National Acronautics and Space Administration.
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1 Introduction

Jonsider a discrete source with one symbol that occurs sigh ificantly more often than

the others. This situation is common in many data compression applications. For
example, in predictive coding the error samples tend to be sinall, or in transform
based coding systems, e.g. subband coding or discrete cosine transform, the signal
energy is usually more concentrated in the low frequency components. In each of
these cases, the data arc quantized before compression, andthe quantized data is
oftena low entropy source consisting of long runs of zeros interspersed with small
nonzero values.

A well-known drawback of Huflman coding in this case is that while the entropy
may be near zero, the rate of a Huffiman code can never beless than onc since the
1 Iuflinan code assigns a codeword to every source symbol. A common means Of
tackling this problem is to encode the runs of the most probable symbol separately
from the other symbols. This is more cfficient, than Huffman coding when onc symbol
is highly probable.

For example, the sequence 0,1,0,0,0,2, --1 can be thought of as 0!, 1,03,2,0°, —1,
i.c., ascquence that alternates between the separate alphabets {0°:i> O} and the
nonzero integers. We insert, the symbol ()’ between adjacent 11011ZWO symbols to
c11 sure that the sequence is alternating. This allows us to encode the runs of zeros
and the nonzero values using two different Huflman codes. We call this approach
allernating runlength Huffman (ARH) coding. This strategy is particularly suitable
for a onc-pass adaptive implementation, which we will discuss in a companion paper
[3].

Combined runlength and Huflman coding is popularin many well-know]l com-
pression systems. Variations of this technique arc used in the baseline Joint I’ho-
tographic Ivzpert Group (JPEG ) algorithm [4], the Efficient Pyramid Image Coder
(11°1C) subband coding algorithm [5], and other applications. The baseline JPEG
scheme combines each run of zeros with the subsequent nonzero value and encodes
themtogether using a static Huflman code. The JPEG algorithin provides rcason-
ably good compression performance for most natur a images [6]. The EPIC subband
coding system encodes the runs of zeros and the non-zero symbols using two scparate
Huffman codes. Both Huflman code tables are sent with the compressed data [5].

1)espite the popularity of combined runlength and Huflman codes, little analysis
has been done in this arca. The goa of this paper isto quantify the compression
efficiency of ARII coding, and to compare it to direct, Huflman coding for 111> sources.
The results presented here arc applicable to predictive coding and subband coding
systems when the quantized output to the entropy coder is 111 ). For block transform
codings like Discrete Cosine Transform and Karhu nen-1.oeve Transform, wc develop
similar results in an upcoming paper [7] by taking inito account the fact that the signal
cnergy is varied in the different frequency components.

In Section 2 wc evaluate the rate and redundancy of the ARH scheme, and derive
atight bound on A RH redundancy asa function of the largest symbol probability.
Wc comparc ARI 1 with direct Huffman coding, and show how the largest symbol




probability determines whether ARH or direct uflman coding is more eflicient.

in Scction 3, we usc the results of Section 2 to find a bound on ARH rate. Wc
also give examples of applying A RH coding to two specific sources.

In Section 4, we discuss future work and give some concluding remarks.

2 Alternating Runlength Huff man Coding

2.1 Rate of ARH coding

Let A denote adisercte 111) source, andlet S denote the source symbol with largest
probability 7°. The Huflman coding algorithm applied to A assigns a codeword to
cach symbol inaway that minimizes the cxpected codeword length (or code rate),
which wc denote by 125, (A). We refer to the application of a 1 Iuffman code dircctly
to A (i.e., without first combining source symbols)as direct Huflman coding.

The redundancy of direct Huflman coding is pu (A) = It (A) - MA), where
H(A) denotes the entropy of LA. ‘1"here arc myriad bounds on bounds on 72 (.A) and
o (A) 19, 10, 11, 12, 13, 14, 15, 16].1t is well-klJown that py; (A) approaches | as
P approaches 1, This is a consequence of’ the fact that a Huffinan code assigns a
codeword to cach symbol, and hence cannot, have late less thanonie, no matter how
small the entropy.

Let A’ denote the source formed by deleting caclioccurrence of S from A. Because
Ais 111), the runlength i of the most probable symbol Sis distributed according to
the geometric distribution

Prob[S] = (1 - )1’

W ¢ encode these runlengths using the optimal (Hufliman) encoding for this distribu-
tion: the Gallager and Van Voorhis (GVH ) code [2], The remaining symbols (i.e.,
the source A’) is scparately encoded using direct Buffman coding,.

The (V11 codeword for runlength¢ consists of j zeros followed by a onc and a
codeword that represents s mod £, where

oo | log(lt 1)
o log P

and j a i/£].From [2], the average length of a GVH codeword is

])k
L(P)=1 + [log, £] T
w] 1ere
k é\ 2[logzlj-i] -y

The particular GVH code canbe identified completely by the parameter £. This is
especially convenient for adaptive implementations becausc it eliminates the need to
transmit a long code table.




'T'odetermine the rate of ARH coding, consider tlic encoding, of the source sequence
SS--- S X, where X is some symbol from A". The expected number of source symbols

i
in such a scquence is

o0

BlI4i=1+Yi(1 -P)P'=—" |
i=0 1-1

and the expected number of cencoded bits for the sequence is 2y (A') + L(F). Thus
the avcrage rate of ARH is

Rarn(A) = (1 - PY[L(P) + Ry(A")] (bits/source sample). (1)

Bounds cm rate (or redundancy) of Huffman codes can be used to bound the quantity
Ry (A’) in the above expression, which produces a bound the rate of ARH coding.
Wc give an example of such a bound in Section 3.

2.2 Comparing ARH and direct Hu ffman Coding

To determine whether ARH or direct Huffman coding is more cfficient, we want to
compare (1) to 12y (A). If I”.> 2/5, a Huflman code for A assigns a onc bit codeword
to the most probable symbol [9, Theoremn 1], [8, p. 122Problem 22], producing
Ry(A)=1+4 (1 -P)Ry;(A). Comparing this quantity to (1), wc find that for this
range of 1I’, ARI 1 is more efficient than direct Huflinan coding whenever

1 - P)L(P)< 1

which occurs when

The quantity 1 -7y is the famous “golden ratio.”
When I’ <+, wc find that 7(P)= /(1 -- I’) and (1) becomes

1+ (1 -- P)R}] (.AI)

in fact the AR} strategy in this case reduces 1o encoding; a zcro each time the
source cmits S, otherwise encoding a onc followed by the Huff man codeword for the
less probable symbol. Thus, this strategy assigns a binary codeword to each source
symbol, and hence can never outperform t he optiinal assigminent, which is obt ained
by dircct Huflman coding.

So if aHuflman code for A assigns a onc bit codeword to S, thenit will have the
same performance as ARH, otherwise it will perform better. If 2/5 < I’ <, then
the AR strategy is in fact an optimal Huflman code for A. If 1> <1/3, then the
most probable symbol has a codeword of length at least two [8, p.122 Problem 22],
and thus in this case ARH will aways beless efficient than direct Huflman coding.

If /3 < I’ < 2/5, then the Huffman codeword length for the most probable
symbol depends on the probability distribution o114, not just on I’. For example,




applying the Huflman algorithm tothe distributions {3/8, 1/5, 1 /5, 1/5, 1/40} and
{3/8, 5/32, 5/32, 5/32, 5/32} wc find that the most probable syinbol has a codeword

of length two bits for the first distribution and only onc bit for the second, even
though I’ = 3/8 in both cascs.

‘JJo summarize, for any 1111 source with largest symbol probability P,

1. 1f I’ <1 /3, ARH is lcss cflicient than direct 1 Tuflman coding,.

2. If /3 <P < 2/5, the efficiency of ARH s lessthan or equal tothat of direct
Hufliman coding, depending on the probability distribution] on . A.

3. 1f 2/5 <I’<~,ARHand direct Huflman coding arc cqually cflicient.
4.1 I’ >~,ARH is more cfficient than direct Huflman coding,.

Thus in a practical system, wc do not require a great deal of accuracy in dcter-
mining the the largest. source symbol probability to select which coding scheme to
usc. It is suflicient to determine whether the most probable svinbol has probability
less than 2/5 or greater than ~.

2.3 Redundancy of ARH coding

From the grouping property of entropy, H(A)= 22(1') 4+ (1 - P)H(A’), where -1,
denotes the binary entropy function. Thus the redundancy of ARH is

pav (A) = Ravu (A) -« H(A)
=@ - P)LP)+ Ry(A)] - Ha(P) - @ - PYH(A)
= (1-P) [L(P)+ pn(A)] - Ha(P) 2
< (1 = P)LP) + 1] - Ho(D). 3)

The inequality follows because the redundancy of a Hufliman code is Icss than one.
This bound is monotonically decreasing, and not surprising y, shiows that the re-
dundancy (and hence therate) of A RH approaches zero as 1 approaches one, The
bound is tight for any I” > 2/5: the redundancy of ARH coding for the distribution
{I’, 1 --1'-- ¢, e} approaches (3) ase-— (). We show the bound (3) in Figure 1 along
with anupper bound on the redundancy of direct Huflman coding [16]. This figure
shows that a coding system capable of switching between ARH and direct, Huffman

coding depending on the value of I’ has maximum redundancy of 1/2 occurring at
rP=-1/2

3 Examples

3.1 Bound on rate in terms of the alphabet size

Suppose the source alphabet has (finite) sizen. Then 125 (A') <[log,(n — 1)], thus
from (1) ,

Rann (A)Y< (1 - PYL(P) +- Togy(n -1 )]].
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Figure 1: Upper bounds on redundancy of AR] | and direct Huflman coding.

Figure 2 shows thisupper bound for n = 4, 16,64, and 256. These upper bounds
may be very 100 SC, particularly when H(A') is small.

3.2 Geometric source

Suppose that the source alphabet is the set, of non-negative integers, and that the
source A has finite mean. In this case, the geometric distribution 1 ‘rob [z] = PP(1 - P)!
maximizes the source entropy [8]. Let Gy denote this source.

G1 has entropy H(Gy) = Ha(1?)/P and direct Huffman code rate 12;;(Gy) = L(3 —
I’)[2], The reduced source Gjis aso geometrically distributed and has direct Huflinan
code rate 12y (G ) = L(1— ). Substituting into (1), wc find that the ARH code rate
for this source is

.RAR”(Q]): (1 - ])) [14([)) + L(l - 1’)]

This quantity aj>proaches oo as I> approaches zero. Thus the rate of ARH coding
may be unbounded even though the redundancy is not.
The redundancy of direct Huflman coding on G is

pu(Gr) = L(1 = P) — - =5~
and the redundancy of ARH is

panin(Gr) = (1= PY[L(P)+ L(1-- P)] - Zf?g’)_
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Figure 2: Upper bounds on ARH rate for alphabet size n.

These redundancies arc shown in Figure 3. Wefind that for this source, the points

where runlength Huflman coding becomes equal to and superior to direct Huffman
coding arc I’=1 —~yand I’ =: 7.

3.3 Two-sided Geometric Source

Consider the two-sided gcometric source G, with probability distribution

( P i=0

Probli] = i <1j2,£> (L?P)M, i70

This is the distribution produced by a uniformly quantized l.aplacian source with
g/o = --Win (1 — 1), where q is the quantizer stepsize and o? is the variance of the
Laplacian distribution.

If I’ > +/5 -~ 2 = .236 then zero is the most Hrobably source symbol. For this
range of I’, wc plot in Figure 4 the redundancy for ARH and direct Huffman coding
for a truncated version of G, (eliminating the integers with magnitude exceeding 20).
The graph indicates that for this source, direct Huflman coding is more cfficient for
P < .394, that ARH is more cfficient when I > <y, and that the two schemes arc
cquivalent when .394 <2 <.
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Figure 4: Redundancy of ARH and direct Huffman coding for two-sided Geometric
source.

0. ablock-orientation to alleviate memory requirement
(i. efficiency over a wide range of entropy

7. it can be easily combined with other communications functionalities like error-
containment and packetization
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